The octahedral complex of a metal ion M^{3+} with four monodentate ligands L_1 , L_2 , L_3 and L_4 absorb wavelengths in the region of red, green, yellow and blue, respectively. The increasing order of ligand strength of the four ligands is (2014 Main)

(a)
$$L_4 < L_3$$
, $L_2 < L_1$

(b)
$$L_1 \le L_3 \le L_2 \le L_4$$

(c)
$$L_3 \le L_2 \le L_4 \le L_1$$

(d)
$$L_1 \le L_2 \le L_4 \le L_3$$

 Arrange the complex formed by different ligands L₁, L₂, L₃ and L₄, according to wavelength of their absorbed light, then use of the following relation to answer the question.

Ligand field strength ∞ Energy of light absorbed

Absorbed light

$$L_1$$

Red

$$L_2$$
 L_3

 L_4

Blue

Wavelength of absorbed light decreases.

.. Increasing order of energy of wavelengths absorbed reflect greater extent of crystal field splitting, hence, higher field strength of the ligand.

Energy blue (L_4) > green (L_2) > yellow (L_3) > red (L_1)